Relative Luminosity Measurement in STAR and Implications for Spin Asymmetry Determinations

Joanna Kiryluk
University of California Los Angeles

for the STAR Collaboration SPIN2002, BNL, September9-14, 2002

- 1. Motivation
- 2. Beam-Beam Counter
- 3. Relative luminosity
- 4. Single transverse spin asymmetries
- 5. Summary

Relative Luminosity at STAR - Motivation

Double spin longitudinal asymmetry (e.g. $p+p \rightarrow jet + X$) is defined as:

$$A_{LL} = \frac{1}{P^2} \times \frac{\left(N_{\uparrow\uparrow} + R_1 N_{\downarrow\downarrow}\right) - \left(R_2 N_{\downarrow\uparrow} + R_3 N_{\uparrow\downarrow}\right)}{\left(N_{\uparrow\uparrow} + R_1 N_{\downarrow\downarrow}\right) + \left(R_2 N_{\downarrow\uparrow} + R_3 N_{\uparrow\downarrow}\right)}$$

P – beam polarization, from CNI polarimetry at RHIC

 N_i where $i=\uparrow\uparrow,\uparrow\downarrow,\downarrow\uparrow,\downarrow\downarrow$ – spin dependent yields and $R_{1(2,3)}$ - relative luminosities:

Assumption: $A_{II} = 0.01$

$$R_1 = \frac{\mathcal{L}_{\uparrow \uparrow}}{\mathcal{L}_{\downarrow \downarrow}}, \quad R_2 = \frac{\mathcal{L}_{\uparrow \uparrow}}{\mathcal{L}_{\downarrow \uparrow}} \text{ and } \quad R_3 = \frac{\mathcal{L}_{\uparrow \uparrow}}{\mathcal{L}_{\uparrow \downarrow}}$$

Requirements for a luminosity process/detector:

- high rates
- small background
- no (or small) spin dependence (longitudinal polarization)

$$\delta R << \! P^2 \! \times \! A_{LL}$$

Analysis done with STAR data at sqrt(s)=200 GeV with transverse proton beam polarization

Important for preparation for the next RHIC run with longitudinal beam polarization!

Beam-Beam Counter (BBC)

- luminosity monitoring detector at STAR

Scintillator annulus installed around the beam pipe, on the east and west poletips of STAR magnet at $\pm 3.5m$ from IR ($2 < |\eta| < 5$)

Schematic side view of STAR

Beam-Beam Counters Instrumentation

- 1 cm thick scintillator SCSN81 (Kuraray)
- 4 optical fibers for light collection
- 1,2 or 3 tiles connected to a PMT
- 15 photoelectron/MIP

Small hexagonal annulus:

- inner (outer) diameter 9.6cm (48cm);
- of 18 pixels, covering 3.3< $|\eta|$ < 5.0 and 0< φ < 2π
- 8 PMT (4 PMT per η ring) feasible **azimuthal** segmentation: Top/Bottom/Left/Right
- timing information, used for triggering

Large hexagonal annulus:

- 1/3 installed in FY02, to be completed for FY03.
- -inner (outer) diameter 38cm (193cm); of 18 pixels; it covers $2.1 < |\eta| < 3.3$, no timing information
- -1/3 installed in FY02, to be completed for FY03.

BBC East * BBC West (E.W) coincidences condition — suppresses beam-gas background -> used in each of pp trigger , defined luminosity in STAR

Luminosity Monitoring and Relative Luminosity Measurement

Scaler Board System:

- Each scaler board has 24 input bits = 7(bunch crossing) + 17(physics inputs) -> 2^{17} = 10^5 Example: one physics bit is the "luminosity" bit, coincidence between signal from BBC's on either side of STAR magnet
- Input bit pattern (information from fast STAR detectors) recorded for each RHIC Strobe received (every 107 ns)

Beam-gas Background

On-line Monitoring of Beam Conditions

Anomaly seen at STAR in specific luminosity was confirmed by independent measurements made at other interaction points at RHIC (PHENIX, CNI polarimeter)

BBC scaler data can be used on-line to provide a feedback to RHIC accelerator group on beam conditions

Absolute normalization from BBC E.W:

-BBC E•W coincidence rate vs time during a **Van der Meer scan** that **determines the beam size**, and hence the luminosity, by controlled relative steering of the colliding beams.

Scalar info sent to RHIC to enable MCR to steer beam at STAR

Luminosity Measurement

- RHIC delivers 10³⁰ cm⁻² s⁻¹
- Integrated luminosity recorded@STAR ~0.3 pb⁻¹

From simulations: BBC "sees" 40% of tot pp cross section, Rate of 20 kHz \sim Luminosity of 10^{30} cm⁻² s⁻¹;

Agreement to within 15% - but we need to know precisely Only relative luminosity!

Relative Luminosity Measurement

- Beam-Beam Counters high rates
- BBC scaler information available for each STAR run; typical STAR run duration from a few minutes to several hours)
- total number of counts from the BBC scaler and used in the analysis: $N=8 \times 10^9$
- statistical accuracy of relative luminosity δ R $_{\rm stat}\sim$ 10 $^{\text{-4}}$ 10 $^{\text{-3}}$

Systematic Uncertainty on Relative Luminosity

- Single transverse spin asymmetry from BBC Left/Right detectors

- Comparison of 2 methods Xratio and Luminosity Normalization

methods

$$\Delta_{1} = \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow} - \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow} + \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}} - \left(\frac{N_{L}^{\uparrow} - R N_{L}^{\downarrow}}{N_{L}^{\uparrow} + R N_{L}^{\downarrow}}\right)$$

BBC Xratio

BBC Left

$$\overline{\Delta/\delta\Delta} = \pm 3.4$$

RMS is statistical in nature, well described by toy MC

Mean of the Δ distribution is sensitive to δR : R=R(true)+ δR -> $\Delta \sim \delta R/2R$

Beam-gas Background Contribution

period 1: before January 18, significant (up to 10%) beam-gas backround

period 2: after January 18, small (2%) beam gas background

Systematic uncertainty on relative luminosity at STAR known down to 10⁻³

Transverse Single Spin Asymmetries from the BBC

Single spin asymmetries measured in BBC East (azimuthal segments, Xratio method): Left-Right and Top-Bottom (the latter expected to be zero)

The BBC East data sets sorted by beam polarization states:

1. Polarized Yellow beam (sum over Blue beam polarization states) heads towards the East, xF > 0

2. **Polarized Blue beam** (sum over Yellow beam polarization states) heads towards the West, xF < 0

STAR data from January 18 (3 RHIC stores)

Transverse Single Spin Asymmetries from the BBC

Spin effects are of the order of 10⁻³, comparable with those observed by CNI

Only statistical uncertainties on the CNI and BBC asymmetries shown. BBC asymmetries: point to point systematic uncertainty is $\sim 3 \times 10^{-4}$, overall systematics under study

Summary

- 1. The Beam-Beam Counter (BBC) in STAR is a good luminosity monitoring detector. The relative luminosity during the first (transversely) polarized proton-proton run is known at the level of 10⁻³
 - statistical uncertainty: 10⁻⁴ -10⁻³
 - systematic uncertainty (beam-gas background) $< 10^{-3}$
- 2. Single transverse spin asymmetries measured with the BBC are of the order of 10^{-3} . Systematic effects need further studies.
- 3. The BBC scaler system will be used to provide on-line feedback on the beam conditions to the RHIC accelerator group.